Competition and Collaboration in Requirements
Engineering: A Case Study of an Emerging
Software Ecosystem

George Valenca
Department of Statistics and Informatics
Federal Rural University of Pernambuco

Pernambuco, Brazil
Email: georgevalenca@deinfo.ufrpe.br

Abstract—Increasingly, small to medium software producing
organisations are working together in collaboration networks
to supply complex compositions of their products and services
to customers. In this paper, we present a case study of two
software companies that are evolving their partnership towards
the creation of a software ecosystem. We investigate the impacts
of their tightening partnership on software product management,
with a focus on requirements engineering practices. We observe
that the requirements definition and negotiation processes are
directly affected by their fluid collaborative and competitive
relationships. Power disputes, volatile roles and mismatches in
release synchronisation are also aspects observed in the studied
software ecosystem. We extract several observations from the case
study that support small to medium software firms in making
decisions within their software ecosystem.

I. INTRODUCTION

The changing dynamics of the globalised software in-
dustry have influenced companies to operate in a complex
and networked setting. Software companies are increasingly
redefining roles and patterns of cooperation and innovation
according to their position in a value chain [1]. When com-
peting in the same market, companies need to interact to
survive in a turbulent environment. This emerging concept
is called Software Ecosystem (SECO), which is defined as
“a set of businesses functioning as a unit and interacting
with a shared market for software and services, together
with the relationships among them” [2]. Software ecosystems
differ from global software engineering, where development is
dispersed in several organisations that do not own the software
produced and interaction among them is rather transitory. In a
software ecosystem setting, a common technology or platform
binds the software products. SECOs are based on the notion
of organisational ecology, with a radically different business
model where frequent interaction and value sharing between
players promote self-regulation in the network [3].

Yu [4] suggests that for an ecosystem to operate healthy,
an energy source is necessary. In a biological ecosystem,
the sun is the energy source. In a software ecosystem, the
market is the main source of energy that can directly and
indirectly affect all players of the ecosystem. By establishing

Carina Alves'?, Virginia Heimann
Informatics Center!
Federal University of Pernambuco
Pernambuco, Brazil
Email: {cfa, vmch} @cin.ufpe.br

Slinger Jansen, Sjaak Brinkkemper
Department of Information
and Computing Sciences?
Utrecht University
Utrecht, the Netherlands
Email: {s.jansen, s.brinkkemper}@cs.uu.nl

collaborative and complementary relationships with suppliers
and customers, software companies participating in a SECO
can cope with financial, time and knowledge constraints [5].
Moreover, they can co-evolve in a hub of local or global
market, complementing features and dividing R&D costs [6].

Software ecosystems introduce new challenges in business,
social and technical levels [7]. Companies interacting in a
SECO shall trigger efforts towards an increasing platformisa-
tion of their products for outside development, via extensible
component-based architectures [6]. Software maintenance and
evolution are important issues to be addressed in software
ecosystems. For instance, players have to manage the risks
of reusing components with potential low technical quality
[8]. The interaction among partners also raises the need for
knowledge management to support communication and effi-
cient propagation of information [2]. Since products features
are provided by different partners in an ecosystem, require-
ments definition and negotiation are also affected by their
specific interests [9]. Software ecosystems provide products
for a wide market, which means that requirements are often
jointly defined by the suppliers of the ecosystem rather than
elicited from users. However, actors may have conflicting
priorities that have to be reconciled. For instance, individual
requirements must be intertwined and merged into a set of
complementary features. This increasingly networked structure
requires new business models to address issues of ownership
and open innovation.

Several studies have investigated software ecosystems from
various domains, such as open source [10], app stores [11]
and online games [12]. However, relatively little scientific
knowledge is available regarding the dynamics of an emerging
software ecosystem composed by Small and Medium Enter-
prises (SMEs). The major strength of SMEs is often their flex-
ibility and adaptability. They are often more skilled than larger
companies in adapting to new customer requirements and
adopting innovative methods. On the other hand, SMEs usually
have limited financial and human resources. To strengthen their
market presence, growth strategies include establishing joint
ventures and alliances.

In this paper, we investigate how SMEs already engaged
in collaborative networks evolve their products towards a
software ecosystem. We aim to understand how software
product management and requirements engineering, in partic-
ular, are conducted by partner companies. From an industrial
perspective, this study aims at understanding the context and
challenges faced by SMEs willing to create a healthy software
ecosystem. We conducted a case study of two Brazilian
software suppliers that are creating an ecosystem with other
partners.

This paper is structured as follows. In section 2, we present
the research method adopted, which includes the research
questions, data collection and analysis procedures. Section 3
presents the results from the case study. In Section 4, we
discuss a set of observations that synthesise important issues
faced by the studied companies in the context of their software
ecosystem. We also analyse these propositions in light of
related literature in the field. Finally, in Section 5 we present
conclusions and future work.

II. METHOD

The focus of this case study has been to investigate how
SME:s evolve their relationships to establish a software ecosys-
tem around their products. We refined this objective in the
following research questions (RQ):

« RQI1 - How is the process of software product manage-
ment adjusted to cope with the challenges introduced by
tighter collaboration with an ecosystem partner?

e RQ2 - What are the implications for requirements engi-
neering in a software ecosystem composed by SMEs?

« RQ3 - How do partnerships evolve among SMEs towards
the creation of a software ecosystem?

To answer the research questions, we conducted a case
study of two small to medium software companies that are
forming a software ecosystem. We adopted an information-
oriented selection and purposively chose companies that were
representative to our study on the basis of expectations
about their information content. An interpretative case study
supports our primarily exploratory and descriptive purpose
of comprehending a particular situation through participants
interpretation of their context [13].

A. Data Gathering and Analysis

Empirical data was collected through open-ended and semi-
structured interviews. We defined an interview protocol with
thirty-five questions that were directly refined from the re-
search questions. This instrument ensured that the same basic
structure was followed in each interview. However, new ques-
tions could be brought up according to interviewees discourse
as a way to provide a more in-depth understanding of the
investigated topics. Based on the protocol, we defined the sam-
pling of interview participants. The research questions required
the coverage of technical and managerial roles from both
companies. Using a snowball sampling strategy, interviewees
were asked to recommend other participants based on their
expertise in the field.

The interviews were carried out with eleven professionals.
Each interview lasted from 20 to 70 minutes. During each
one, we agreed upon a nondisclosure agreement (NDA) to
handle data anonymously. Participants were asked to explain
company’s internal documents such as requirements specifi-
cation and project plans. These artefacts complemented the
interviews and were considered additional sources of evidence.
We further contacted participants by e-mail to clarify and
extend data gathered during the interviews. Table I provides
an overview of the participants.

TABLE I
PARTICIPANTS

Company Job Function Years at the company

A Project Manager 5 years
Business Analyst 3 years
System Analyst 5 years

B Project Manager 6 years
Product Manager 11 years
Release Manager 4 years
Integ. Team Leader 1,5 year
Business Analyst 6 years
System Analyst 1 2 years
System Analyst 2 3 years
Tester 3 years

The different number of participants interviewed per com-
pany was due to the fact that professionals from Company
A play several roles. For instance, the project manager also
acts as product manager and product owner during require-
ments prioritisation. The system analyst is also responsible
for software development and testing. In its turn, Company B
separates these functions in specific roles, such as the release
manager and the integration team leader.

All interviews were recorded and further transcribed by two
researchers. With the support of Weft QDA software tool for
qualitative research [14], we analysed interview transcripts
through a coding procedure. We classified related quotations in
labels and subsequently assembled them in categories. Then,
we examined facts, concepts, ideas and their relationships.
Based on these results, we derived a set of observations
to explain how studied companies are forming a software
ecosystem, and how the software product management and
requirements engineering practices are affected.

B. Case Companies

The case study reported in this paper results from the inves-
tigation of two software organisations situated in Recife/Brazil.
Company A produces software products for retail chains,
distributors and wholesalers markets. It has five software
products in the portfolio. The company was founded in 1986,
and currently has 70 employees. In 2013, the company has
achieved level F at the Brazilian Software Process Improve-
ment Program (MPS.BR) [15]. This program is inspired on
CMMI process improvement approach. In the case study, we
explored software integrations around the company’s main
commercial product. The product is an ERP that automates
business rules of distribution, wholesale and retail network,

focusing on the management of suppliers and products for
resale. This product is used by more than 2.000 registered
users from 12 customers in Brazil and abroad. In addition, the
company provides system deployment and bespoke develop-
ment services to specific customers.

Company B is specialised in developing management sys-
tems and providing consulting services. Its main product is
a complete ERP solution that provides business automation
for several market niches, such as: health, oil and gas, sugar
industry and logistics. The product’s main strategic differential
is the module of accounting and tax compliance that is
automatically updated with the frequent changes of Brazilian
accounting standards. The company has around 300 employees
distributed in its headquarter in Recife and branch offices in
Maceio and Sao Paulo. In the last years, the company has
established a leadership position within regional IT industry,
which results from a portfolio of 15 software products. The
company has a strong focus on software quality, having
achieved the following certifications: ISO9001, CMMI level
2 and MPS.BR level C. We investigated the context of its
main software product, an ERP which currently is adopted by
16.000 users from 600 customers in Brazil and abroad.

III. RESULTS

In this section we present the results obtained from our
study in Companies A and B. The subsections correspond to
the categories that emerged from the case study analysis.

A. Portfolio Management

The product investigated at Company A provides enterprise
procurement solution for retail chains, distributors and whole-
salers markets. In particular, it provides stock supply, inven-
tory management and tax review functionalities. Company B
serves the market with a full ERP focused on accounting and
finance areas. Accounting parameterisation is a distinguishing
feature provided by this system, which allows users to fully
configure any accounting entry. In both companies, product
integrations can occur in the following ways: between products
from partners, with bespoke systems from customers or with
products from other suppliers that serve a particular customer.
Currently, the product from Company A is integrated with 15
other products, while the product from Company B has 110
product integrations. The studied companies have partnerships
with local, national and international companies.

To better structure upcoming releases and increase customer
satisfaction, Company A decided to focus on specific features
of the product. Finance and procurement were prioritised over
tax and accounting functionalities. The company modularised
the system and started to establish integration partnerships
with other suppliers. According to the company’s project
manager, “partners are experts on features that the product
does not provide or features that were discontinued”. By
complementing each others functionalities, partners support
the co-evolution of their products. This trend is reinforced
by the product manager of Company B: “we establish a
partnership for specific parts of the system that we have

no intention to develop”. To select products and respective
partners, this company defines a set of criteria that partners
should satisfy. In particular, they look for partners that allow
the company to enter in new vertical markets.

The companies generally initiate a partnership when facing
challenges in a new market segment, as exemplified by the
project manager of Company B: “Since we do not have enough
experience in the retail segment, we are having problems to
cope with the flow of innovations in the field”. Therefore,
Company B proposed the collaboration with Company A as a
strategy to enter in the retail market. For Company A, the main
motivation to establish the partnership is due to the superior
accounting features of Company’s B product.

The products are commercialised under different contract
types. Customers may acquire the product from Company A
by renting it for a fixed price during a pre-defined period,
or through a project involving consultancy and a monthly fee
that is annually adjusted. Company B provides two contract
models: a monthly fee that is calculated according to the
number of licenses rented and the customer size, or a reduced
monthly fee to cover maintenance costs.

B. Product Roadmapping

Product roadmaps in the case companies typically cover
one year. At Company A, the product committee defines the
product roadmap by analysing potential market demands and
new features to fulfill these needs. The project manager from
this company noted that the product roadmap is a “market
demand to define a proactive vision of the product improve-
ments”. In the beginning of every year, customers require
the product roadmap to understand what releases are planned
and how the product will evolve. In some cases, roadmaps
can be developed in close collaboration with customers to
create customer-specific product roadmaps. These roadmaps
establish a commitment between both parties and can be used
as a basis to negotiate the integration contract. The project
manager added that, depending on top management decisions,
information about specific features can be retained to increase
product value.

The product manager at Company B develops the product
roadmap aligned with the company’s strategic planning and
based on customers’ feedbacks. According to him, to enter
in a new market segment “the product must be adapted to
speak its language. . . Customers want to know how the product
features fulfill the business processes of their segment, i.e.
which features will enter in the product roadmap, in which
order, at what time, etc. After I understand the domain and
the products that support this segment, I start to propose new
features for the product”.

Currently, Company B faces challenges in balancing re-
sources to develop customer-specific customisations and en-
sure the evolution of the product according to the planned
roadmap. To address this situation, the development teams
have been assigned to dedicate more time developing new
features from the roadmap than satisfying specific demands
from customers. This prioritisation has been aligned with the

company’s strategic plans to target new markets. This means
that the product evolution aims to innovate the platform rather
than adding customer-specific features into the product.

C. Release Planning

Both companies define the release planning aligned with
their product roadmap. At Company A, the project manager
and members of the development team form a product commit-
tee to plan the releases. At Company B, the product manager
is responsible for the definition of next features to be launched.
She arranges meetings with the business analyst to detail each
new feature and provide development guidance for developers.
Interviewees stressed that quite frequently emergent demands
from customers can change the release planning.

Product releases are of two types in the case companies.
Regular releases can address legal issues and provide novel
functionalities. These new features are part of the product
roadmap or originate from customer-specific customisations
that companies consider relevant to include in the standard
version of the products. In addition, frequent bug fix releases
are detailed in release notes sent to all customers. At Company
A, there is a regular product release every six months. Release
frequency in Company B has been gradually increased in
recent years. Latest versions were launched every month to
speed time-to-market. However, this strategy created several
problems:

o The short release cycle increased the number of bugs in
the product. It was required to release several intermedi-
ate versions to fix bugs;

o Customers considered the steady flow of new versions
disturbing, since updating the product frequently may
represent a risk for their running systems;

« The company adopted a reactive approach by prioritising
customer-specific customisations and neglecting the im-
plementation of new features from the product roadmap;

o The very short release schedules impacted the routine
of team members, who were under strong pressure to
package new releases every month. Since team sizes re-
mained the same, the company was demanding unrealistic
efficiency from the teams.

After recognising all the issues caused by the short release
cycles, Company B started to launch new product releases
every two months. The current goal is to adopt a biannual
periodicity for regular releases and launch additional versions
for specific customers every two months. During integra-
tion projects, partner companies must deploy their products
simultaneously at customer site. However, release planning
cycles are not properly synchronised and product versions
are launched in different moments. Development teams from
both companies lack a centralised communication and they
are not coordinated to treat integration conflicts. In particular,
although a project manager from a given partner may be
responsible for the integration project, he has no authority
over the development team of the other company. Therefore,
new product versions can originate several mismatches in
the product integrations. Fixing these problems is frequently

postponed due to limited team resources from the companies
who are exclusively dedicated to integration projects. The
project manager of Company A raised an additional problem:
“my need or urgency may not be the same of my partner”. The
companies are aware of these challenges. They currently try
to minimise integration problems through follow-up meetings
conducted by project managers, who aim at improving the
coordination of partners development teams and synchronising
developments’ prioritisation. However, the companies do not
have a clear strategy on how to align their release planning.
This situation limits the co-evolution of their products.

D. Requirements Engineering

As market-driven software suppliers, the case companies
must understand the needs of market segments to define the
product vision and identify market requirements. In Figure 1
we describe the external relationships of the teams from
both companies. It evidences the market-driven and customer-
specific requirements engineering processes performed by the
case companies. It also highlights that several interactions
occur between the teams during different phases of the require-
ments engineering process. This means that partners working
in a software ecosystem should make joint decisions regarding
the requirements for their products.

At Company A, the product committee and experts in the
business domain define the overall product evolution strategy.
Moreover, the committee evaluates if requirements defined for
a specific integration project can be suitable for a larger group
of customers. At Company B, the product manager defines
a set of product features in the roadmap to satisfy strategic
demands related to current customer market segments as well
as targeted market niches. During integration projets, require-
ments elicitation aims at identifying customisation requests
from customers, integration needs from partners, and legal
demands. At Company A, requirements elicitation is carried
out either by the project manager or business analyst, while the
project manager is responsible for this activity at Company B.
Company A created an artefact called ‘Analysis of Requests
and Needs’ (ARN), which provides a questionnaire for cus-
tomers to describe their demands. However, the discourse of
the business analyst evidenced flaws in the elicitation process:
“after the system is deployed, the customer sometimes reports
that there is something in his process that he did not state;
something that was not identified during the elicitation can
emerge as a need. This new demand can be analysed and
implemented in future releases along the year”.

Companies receive demands from partners to develop new
integrations among the products. Integration requirements are
jointly defined by team members. These requirements involve
technical aspects such as database tables and mappings among
systems, data dictionary, data types exchanged and integra-
tion flows. Integration requirements must be “generic and
reusable” among partners, stated a system analyst at Company
B. Integration and functional requirements are separated in the
project documentation. Interviewees argued that using such
simple categorisation accelerates requirements documentation.

Ma rket

411\3‘? >
oduﬁ‘ ot .- .b 'broﬂ'bq
. g{mesP‘ - ped" s, "I‘CB — ’badma ®
m® . 10 eaw“-“5 5 g St P
Company A - - W\ce; afive wen Wit g, M6 Company B
Product @ E\ J"""\E‘f'r faa jacfﬁc Product Manager
committee ‘—-'-
Customer R
@& - M°gotiatesr > requiremen
B T U
e el = 4,
@9?" - N Release Manager
naq?"»“‘-a?i e Ve ~Lliage,
e J‘.—\E_,.,- &(Bjj\/ % - w.__('c,:{,ﬁ
9 & & Yo, ~ns @
s g ®
Project Manager e \%Q, Project Manager r—9
A op Integration
s N <9
. ~ define scope and requirements for integration \n\ . Team Leader
Busineﬁnalyst propose new product features Business Analyst ®
)] A
® negofiate features with partners ® Tester
System gnalyst System Analyst
ig. 1. External Interactions during the Requirements Engineering Process.
Fig. 1. External Interact during the Req ts Eng ¢ P

A system analyst at Company B explained that integration
requirements are identified through functional requirements:
“I need to know the functional requirement to see what is
related to the integration. For instance, to create a field in
the product registration form I need to define how integrating
systems will access it”. The companies do not formally specify
quality requirements, which are simply treated during the
development process to address performance and security
issues, for instance.

Additional sources of requirements include new ideas pro-
vided by project managers, development teams, business ana-
lysts, management unities and even the companies’ presidents.
Once an integration project is concluded, stakeholders from the
customer companies can describe their new demands through
a web-based request system. The requests are automatically
forwarded to the helpdesk service. They conduct an initial
filter to select or discard requests. Then, the companies’
teams analyse these demands and follow up their status in
the tool, from the demand registration until the fulfilment of
requirements in a future release.

The case companies face a challenging requirements ne-
gotiation due to the interplay with several partners. They
must align their own interests and schedules, and negotiate
alternative solutions before presenting a proposal to the cus-
tomer. Negotiation between partners can be either focused
on a wider scope of the integration project or it can take
place over the set of requirements. According to the project
manager of Company A, power conflicts are frequent among
partners. Once recognising the business opportunities brought
by a specific demand from customers, partners can battle to
implement that feature. The requirements negotiation process
starts when the project scope is being defined, but it can
also happen throughout the integration project. To stay in
power, companies frequently attempt to develop features that

they do not have sufficient knowledge to implement. It was
highlighted by several interviewees that partners who behave
in this manner may harm the success of integration project
and damage their reputation.

Agreements are easier to achieve with consolidated al-
liances, when companies already know their specific roles and
duties in the network. In new partnerships, there are uncer-
tainties about the partners’ true intentions, yielding conflicts
among them. According to a project manager from Company

“there is a partnership, but each one has his own goals and
interests”. To treat requirements conflicts, meetings are held
to discuss goals, benefits and challenges related to each part of
the integration scope. During these meetings, companies nego-
tiate what features each partner will implement. Generally, this
decision is based on the companies’ technical expertise, but
dominant partners can also impose their ambition towards a
particular set of features that can be strategic for their product
evolution. In addition, each company presents an estimative of
time, costs and team resources needed to implement the pro-
posed part of the integration scope. After reaching a consensus,
partners individually plan their deliveries. The deliverables are
described in the ‘Vision Document’, which consists of the
commercial proposal for a particular integration. Then, the
project manager and the release manager negotiate specific
requirements with the customer.

Requirements analysis follows the negotiation phase. At
Company A, it begins with an initial evaluation by the project
manager. She analyses the feasibility of a demand received
from the ARN document or the web-based request system.
At this moment, no estimation technique is used. Once the
demand is considered a suitable requirement, it is registered
as a ‘Customer Change Request’ (CRC) in the One Studio tool.
Then, the business analyst evaluates the demand to determine
if it consists of evolving an existing feature or creating a new

one. Finally, a planning meeting is carried out among the
project manager, business and system analysts. At Company
B, the business analyst is responsible for performing such
analysis. She verifies whether the requirement is sufficiently
described and contacts the stakeholder who demanded it to
obtain additional information. Finally, the business analyst
verifies whether the requirement shall be introduced as part
of the standard product or included in a specific version for
the customer who requested it.

Requirements are prioritised in the beginning of each Scrum
Sprint at Company A. During a meeting between the project
manager and the quality team, requirements are classified
as billable, strategic or legal. Requirements prioritisation is
carried out by the project manager and the business analyst at
Company B. They consider criteria such as customer prefer-
ences, impact over the product evolution and dependence with
other requirements. Their main concern here is to reduce time-
to-market. Considering the joint development, system analysts
of partner companies promote meetings to discuss integration
aspects such as software artefacts that can be reused and
integration requirements. Both companies produce a document
describing the technical details of the integration project.

The requirements documentation is validated by the product
committee at Company A. After being validated by the project
manager at Company B, the documentation is forwarded to
the product manager, who analyses the alignment of strategic
requirements and macro features with the product roadmap.
However, the requirements document is not kept up to date
reflecting integrated systems evolution. This hampers the con-
struction of a proper historical basis of integration projects.
The project manager from Company A claimed that the
main reason for not updating the requirements documentation
is due to their very short development cycles. Integration
projects bring several small changes in requirements because
the evolution of functionalities in one product can affect
diverse systems. Hence, the companies develop parameterised
functionalities to address the impact of changes on a wide
range of users. Changes generated by customer needs and
legal issues are generally simple and punctual because of the
products maturity.

E. Partnerships

Companies A and B have around 10 and 20 partners,
respectively. Generally, partnerships are established due to
demands from specific clients to integrate products as well as
opportunities to enter in new market segments. However, not
all product integrations occur with a partner. In these cases, the
supplier simply has to integrate the product with other software
solutions developed from other companies or with internal
software systems from customers. We identified two types of
partnerships between the studied companies: existing products
integration and joint new product development. The first case
usually happens when a company wins a new contract, then
they offer to the customer an integrated solution developed
with partners. This strategy enables companies to specialise
in a particular domain and indicate partners that complement

their products. It can also happen in a proactive manner, when
the companies conduct their annual roadmap planning and
identify strategic market niches they want to enter. Then, the
companies propose the development of new products with
current partners or search for new partners specialised in those
segments. The product manager at Company B highlighted that
companies usually start the development of new products with
partners based on opportunities identified in previous joint
projects. Recently, Companies A and B have developed a new
product for the pharmacy retail market together with a third
partner.

The evolving relationship among partners requires several
actions to align business strategies, such as selection of strate-
gic market niches for all parties, negotiation of pricing models,
and agreement on how to conduct joint evolution of products
and technologies. After establishing a new alliance resulting
from an integration project, companies attempt to eliminate
overlaps between products and emphasise complementary
features. However, as mentioned by the system analyst of
Company B, a common challenge is managing the customisa-
tion of several products with the specific needs of customers.
Partners need to improve the analysis and understanding of
the customers’ business processes to facilitate the alignment
with products features. We identified that integration projects
can follow three strategies (Figure 2):

o Customer-driven Integration — customers negotiate sep-
arate contracts with each supplier. Customers have strong
control over the integration project and suppliers have
considerable autonomy to evolve their products indepen-
dently. In this situation, we did not observe an emerging
ecosystem being created,;

o Supplier-driven Integration — customers are aware of
the existence of two or more suppliers. However, cus-
tomers negotiate the contract directly with one supplier.
This supplier assumes the responsibility to control the
integration project and to conduct negotiations between
customers and suppliers. This scenario enables the cre-
ation of an ecosystem among actors, in which suppliers
have a shared power towards the evolution of software
products;

o Value Added-Reseller — one supplier assumes the re-
sponsibility for the integration with other suppliers by
adding features to its own product. The partnership
among suppliers is hidden from the customers. The
product commercialisation is dealt directly between the
customer and the supplier who owns the main product. In
this situation, we observed a growing dominance by the
central supplier. The creation of an ecosystem depends
on the company’s ability to demonstrate the benefits of
the partnership to other suppliers.

The supplier-driven integration is the most frequent type of
partnership in the studied context. Players establish the sharing
of duties and start the negotiation to define who is going to
implement what features. This is a very critical phase to decide
which supplier will control the most strategic features.

Customer-driven Supplier-driven Value Added-
Integration Integration

Reseller
Ak fcaN i
Customer Customer Customer
/ \ e 2
@ @ | Suppli
Supplier upplier
£ &m il °
Supplier Supplier o=, f
Supplier Supplier
gt e
ra &
| Supplier Supplia(J
| e —

Fig. 2. Partnership strategies.

We observed that technical teams are not explicitly aware
of the prosperity of partnerships. Since developers are not
involved in strategic decisions, they believe that alliances
end after a successful joint integration project, as revealed
by one system analyst from Company A: “this notion of
alliance dies once a project is concluded”. By considering the
integration as a temporary effort and not a structural relation-
ship, developers do not understand the long-term opportunities
and commitments. In particular, some features may not suit
future integrations. Therefore, code quality, evolution, and
architectural issues must become structural parts of integration
projects with consistent buy-in from the development team.

To address the growing challenges involved in the integra-
tion of several products, both companies are developing an
integration platform. The companies are negotiating how this
platform will be shared and managed by their partners. Top
management perceived that the platform is a strategic action
to increase the prosperity of their ecosystem. In addition,
the release manager and system analyst from Company B
are enthusiastic about the benefits of the platform to support
the communication among products from different companies.
However, other interviewees have different opinions regarding
the benefits of the platform. Interviewees from the technical
teams of both companies argue that the evolution of the
platform is an extra development effort, since the maintenance
of the platform is considered quite complex. These divergent
viewpoints may indicate the need to better communicate the
strategies related to the integration platform. In particular,
companies should ensure that decisions about the platform are
shared and understood among all levels of the companies.

IV. DISCUSSION

In this section, we present a set of observations to explore
the main opportunities and challenges faced by studied com-
panies during the creation of a software ecosystem. These
observations are analysed in light of literature in the field.

1. SMEs face a dilemma during the early stages of a
software ecosystem: are we competitors or collaborators?

The studied companies confirmed the gains obtained from
strengthening relationship with their ecosystem partners. A
key benefit obtained from partnerships is the opportunity to

enter in new markets that partners are already well established.
In addition, new contracts can be obtained by indication
from partners who usually propose joint sales to customers.
This means that each partner can specialise in their own
competencies to provide complementary features within the
ecosystem. The availability of integrated products also means
that customers will benefit from time and cost reduction.

However, companies within a software ecosystem face an
increasing socio-technical complexity, which not only arises
from technological challenges to integrate several software
systems but also involves battle for power and control of
the most valuable product features. Our findings also indicate
that managing joint teams brings a number of challenges.
For example, technical teams do not fully understand the
purpose, direction and responsibilities for each team; managers
responsible for a product integration do not have full authority
on the partners teams. Another problem we identified is
that technical teams are not fully aware of the relevance
of some product integrations. Therefore, studied companies
should improve internal and external communication channels
to highlight the importance of partnerships.

Participants from both companies recognise the positive
aspects of collaboration. Nevertheless, they also acknowl-
edge that competition is inevitable due to the fact that they
are medium-sized enterprises fighting to survive in the very
competitive Brazilian software market. For instance, product
roadmaps and other strategic issues are not fully shared among
partners. Companies tend to share more information with long-
term partners, while new entrants have very little awareness on
the products evolution directions. Similar behaviour has been
reported in other studies. In a general business perspective,
Moore [16] indicates that the complex interplay of competition
and collaboration strategies continues during the lifecycle of
an ecosystem. lansiti and Levien [17] propose that participants
in a business ecosystem are engaged in mutually dependent
relationships that will affect the health of the ecosystem as
well as the individual health of their own business. The level
of intimacy wanted in a relationship with companies depends
on how critical and strategic the product from a partner is [18].
Therefore, partnerships enable sharing of knowledge, tech-
nology and increase innovation potential, factors that makes
a company an attractive partner [19]. Coopetition is a main
driver of innovation and performance. It takes the relationship
between the companies to a new level, where players work
together to identify innovative requirements and deliver new
solutions that address market needs. According to Levy and
colleagues [20], to successfully address coopetition, SMEs
need to carefully make decisions on what to share, with whom,
when, and under what conditions.

2. Roles are volatile in a software ecosystem formed by
SMEs

Manikas and Hansen [9] identified that the most common
actors in a software ecosystem are keystone, niche player,
external developer, independent software vendor and customer.
The keystone plays an active and predominant role in the
creation and diffusion of value within the ecosystem. Key-

stone companies often own the platform, which gives them
a competitive advantage, but also provide resources to other
players contributions in a ‘win-win’ fashion [19].

We did not observe an explicit keystone behaviour in the
studied companies. In fact, both companies take the lead-
ership role depending on the market niche in which they
are operating. Company B is the most active partner who
identifies market opportunities and promotes new alliances.
However, Company A has also done so in the past. The
shared ownership of the integration platform was considered
beneficial by participants to maintain a healthy and balanced
partnership. Currently, we did not identify dominators who aim
to extract the maximum value of the network without sharing
it with other players.

There are several ways to interpret this phenomenon of
volatile roles in the ecosystem. The companies are forming a
community-oriented ecosystem in which they create flexible
committees to promote self-regulation [3]. Other possible
explanation is that the ecosystem is not mature enough for a
dominator to arise. Another possibility is that an ecosystem
composed by SMEs has different dynamics compared to
ecosystems created by large organizations who play a central
role integrating other players around its own platform. To
define a proper direction for the evolution of the ecosystem,
the companies need to address several SECO governance
issues [21], such as, define clear responsibilities, make busi-
ness strategy explicit, and decide the level of knowledge
sharing. We do believe it is inevitable that the partners will
soon observe that their repeated involvement in partnerships
requires explicit ecosystem management, as we have analysed
in other case studies [22].

3. SMEs participating in a software ecosystem jointly
develop and manage a shared platform.

In this scenario of joint development, business and system
analysts from both companies participate in several meetings
to define integration requirements. These requirements do not
refer to feature specification but are rather technical statements
to establish the integration process. The impact of integration
requirements in all systems must be carefully assessed, since
they are part of a shared infrastructure. The teams treat these
requirements as reusable assets. By doing that, we can foresee
that integration requirements will become platform require-
ments during the evolution of the SECO. According to Harland
and Waust [23], platform requirements involve technical aspects
such as software libraries and content databases. The authors
claim that platform requirements are the basis of a product
platform, which is a development environment used by actors
to develop complementary products in the ecosystem.

This discussion of integration requirements is totally aligned
with the current efforts of the case companies to build up a
central platform that supports their integration projects. Isckia
and Lescop [19] describe that a platform enables a composition
of functionalities or services that partners can access via a set
of common interfaces. The platform will support the develop-
ment of valuable synergies and complementary innovations for
partners and customers. Gawer and Cusumano [24] propose

that the development of a successful platform follows four
main stages: define the scope of relationships, build the core
strategically, build relationships with external complementors,
and optimise internal organizational structures. lansiti and
Levien [17] advocate that a platform is especially important
for keystone companies to position their leadership and foster
their value proposition in the whole ecosystem. In addition,
companies use the platform as an instrument to control their
influence on the ecosystem [23].

In the studied companies, an initial platform was created and
is being maintained by both partners. They are evolving from
a productisation to a platformisation approach [25], fostering
a vibrant and potentially larger ecosystem around the platform.
In this sense, the companies are embracing mutual dependency
that would require closer alignment of their business models.
The companies face a hard decision to make: they should share
their internal plans with strategic partners, while they do not
want to lose their autonomy. On the other hand, they are aware
of the importance of the platform to enable future integrations.
Hence, the prosperity of their products will depend on the
healthy evolution of the platform. Due to resource constraints
faced by SMEs, the attraction of third-party developers can be
an important strategy to create niche features.

4. Partner companies must synchronise product strategies
to sustain ecosystem success.

Nowadays, software companies are expected to provide an
overall view of the product evolution and long-term decision
making about future product releases [26]. To effectively
integrate products from different partners, companies should
make an effort to synchronise their product releases. By doing
that, partners can better plan and structure their future re-
leases aligned with the product evolutions from other players.
This strategy can also support the maintenance of integrated
solutions. Although the studied companies are aware of the
problems brought by the lack of product release visibility, they
are not fully prepared to evolve their systems in a synchronised
and jointly fashion. Frequently, the evolution of one product
may generate incompatibilities with other solutions that are
part of an integration. For example, there may be conflicts
related to features functioning or even removal of features due
to potential disuse by another integrated system.

To address these mismatches, partners are gradually aligning
features prioritisation in future product releases. In particular,
both companies follow agile methods such as SCRUM and
Kanban for software development and project management.
These practices could also be applied in software product man-
agement context. Vlaanderen et al. [27] introduce the notion of
product management sprint as a cycle performed immediately
before the development sprint. In these product management
sprints, partners could not only analyse interdependencies be-
tween features, but also start to relate their product strategies.
We can foresee that this will lead to the convergence of product
roadmaps, supported by the extended release cycles currently
targeted by the companies. By synchronising product releases
and roadmaps, partners can simplify integrations and establish
a self-regulation mechanism. The frequent interaction and

feedback between the companies can promote the openness
and transparency of strategies. As a consequence, the health
of the ecosystem can be improved.

5. A partner’s power has a strong influence on require-
ments negotiation.

Requirements are negotiated by the case companies in
a three-step approach. Primarily, partners define their roles
in the integration project and divide the scope of systems
integration. Then, the companies identify and prioritise a set
of requirements with customers. Finally, a third round of
negotiation is performed among partners, who suggest new
features for each others products and establish integration
requirements. According to interviewees, several challenges
arise both during the interactions among partners and with
partners and customers.

The tendency of customers to require a full customisation
of the products can lead to a tough negotiation. Suppliers must
deeply understand the effects of customers’ demands to agree
on scalable adaptations and reduce maintenance costs, since
products are developed for a wider market. However, partners’
key challenge consists on disputes for a reasonable division of
responsibilities and feature implementation. The strategic po-
sitioning of the companies in the software ecosystem strongly
affects the negotiation of requirements. This is clearly related
to the notion of power, which is a common issue affecting
decision-making in requirements engineering [28].

In the studied companies, power relationships are perceived
in varied moments. Once inviting a partner to provide an inte-
grated solution and thereby sharing its pool of customers, the
company has a greater power over the negotiation. Therefore,
the company can select the requirements that aggregate more
value for the product. This situation represents the legitimate
authority of the inviter company, who may act as a value-
added reseller and exert a more pervasive influence over the
negotiation process. Another illustrative example occurs when
the invitee controls the agenda, since his participation is due
to a greater experience on a particular niche or technology. In
this case, the direction of power relationships is oriented by
the skill or knowledge possessed by the partner, configuring an
expert power. Finally, one product may act as a central hub and
send information to the other systems. The integration project
will be centred around this product, increasing the bargaining
power of the supplier during the requirements negotiation.
Milne and Maiden [28] call this situation as referent power,
which here consists of the strategic characteristics of one
product that increase the power of the product’s supplier.

We observed that the dynamics of requirements negotiation
is constantly changing and this can be attributed to the
emergent character of the investigated software ecosystem.
According to Moore [16], the lifecycle of an ecosystem
involves the phases of birth, expansion, leadership and self-
renewal. The case companies are currently building up the
software ecosystem by attracting external players to provide
solutions that satisfy niche markets. As SMEs, partners aim
to complement their products and increase their synergy at
this birth stage. However, companies have to face battles for

strategic requirements that allow them to enter in new market
niches and thrive in the ecosystem. Such conflicts of interests
are very common in emergent ecosystems, since partners have
not clearly established power configuration and coordination
mechanisms are incipient or even inexistent. Moreover, the
shared responsibility over requirements leads to problems of
mutual understanding [29]. To address the positioning issues
involved in these negotiations, partners must understand the
co-evolution of their products within the ecosystem.

V. CONCLUSION

In this paper, we reported on a case study of two small
to medium market-driven organisations that are forming a
software ecosystem. The experiences of the studied companies
have indicated that by selling their products as complementary
solutions to address the needs of specific customers, the
companies can access new niches and reduce time to market.
Since SMEs face limited resources, tightening collaboration
is an important strategy to their survival. However, companies
must balance the inevitable competition among them.

The findings from the case study can be summarised as
follows. The roles and relationships between partners in young
ecosystems are extremely volatile and flexible. The partnership
is maintained as long as there exists strategic alignment, trans-
lated in efforts to synchronise product releases and roadmaps.
Such relationships lead to relatively fast innovations: as collab-
oration is mostly pragmatic, integrations are built with a short-
term view. To counter such downside of the pragmatic view,
software vendors can make integration and partnering more
structural through SECO governance issues. Accordingly, part-
ners are constructing a shared platform, which shall facilitate
the introduction of new features and support the prosperity of
integrated products. We also observed that, even in such young
relationships, deliberate displays of power and claiming of
specific features during requirements negotiation. Companies
must share their internal plans and pools of customers with
partners, but they do not want to reduce their autonomy.
This illustrates a natural part of the process, which is not
harmful as long as both companies maintain their benefits.
Finally, this paper can be seen as a call to action for software
firms to structurally develop their partnering relationships and
communication channels, as collaboration seems to be one of
the main ways to gain competitive edge in the software sector.

This case study has an explorative purpose. Therefore, we
aim to further investigate the presented observations through
new studies with SMEs in Brazil and other countries. We plan
to explore how other similar software ecosystems deal with the
issues investigated in this paper. In addition, with sufficient
case material we also aim to create an ecosystem maturity
model, with processes and practices that make a company
more mature in terms of ecosystem governance.

ACKNOWLEDGMENT

We are grateful to the participants from the studied com-
panies for sharing their experiences and providing valuable

information to this study. This research has been partially
funded by CAPES-Brazil (grant 1833-13-8).

[1]

[2]

[3]

[5]

[6

=

[7]

[8

[t}

[9]
[10]

(11]

(12]

[13]

REFERENCES

G. Hanssen and T. Dyba, “Theoretical foundations of software ecosys-
tems,” in Proc. 3rd International Workshop on Software Ecosystems,
2012, pp. 6-17.

S. Jansen, A. Finkelstein, and S. Brinkkemper, “A sense of community:
A research agenda for software ecosystems,” presented at the ICSE
Companion, 2009, pp. 187-190.

G. Hanssen, “A longitudinal case study of an emerging software
ecosystem: Implications for practice and theory,” Journal of Systems
and Software, vol. 85, no. 7, pp. 1455-1466, 2012.

L. Yu, “The market-driven software ecosystem,” IT Professional, vol. 15,
no. 5, pp. 46-50, 2013.

M. Khalil, P. Dominic, H. Kazemian, and U. Habib, “A study to examine
if integration of technology acceptance model’s (tam) features help
in building a hybrid digital business ecosystem framework for small
and medium enterprises (smes),” in Proc. of Frontiers of Information
Technology. FIT’11, 2011, pp. 161-166.

J. Bosch, “From software product lines to software ecosystems,” in Proc.
13th International Software Product Line Conference, 2009, pp. 111—
119.

O. Barbosa, R. Pereira, C. Alves, C. Werner, and S. Jansen, “A system-
atic mapping study on software ecosystems from a three-dimensional
perspective,” in Software Ecosystems - Analyzing and Managing Busi-
ness Networks in the Software Industry, S. Jansen, S. Brinkkemper, and
M. Cusumano, Eds. Edward Elgar Pub. Ltd., 2013, ch. 3, pp. 59-83.
F. Santana and C. Werner, “Towards the analysis of software projects
dependencies: An exploratory visual study of software ecosystems,” in
Proc. 5th International Workshop on Software Ecosystems, 2013, pp.
7-18.

K. Manikas and G. Hansen, “Software ecosystems - a systematic
literature review,” J. Syst. Softw., vol. 86, no. 5, pp. 1294-1306, 2013.
T. Mens and M. Goeminne, “Analysing the evolution of social aspects
of open source software ecosystems,” in Proc. Third International
Workshop on Software Ecosystems, CEUR-WS, 2011, pp. 1-14.

M. Anvaari and S. Jansen, “Evaluating architectural openness in mobile
software platforms,” in Proc. Fourth European Conference on Software
Architecture: Companion Volume, 2010, p. 8592.

S. Draxler, A. Jung, and G. Stevens, “Managing software portfolios: A
comparative study,” in End-User Development, M. Costabile, Y. Dittrich,
G. Fischer, and A. Piccinno, Eds. Springer Berlin Heidelberg, 2011,
pp. 337-342.

P. Runeson and M. Host, “Guidelines for conducting and reporting case
study research in software engineering,” Empirical Software Engineer-
ing, vol. 14, pp. 131-164, 2009.

[14]
[15]
[16]

(17]

[18]

[19]

[20]

(21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

(2013) Weft qda. [Online]. Available: http://www.pressure.to/qda/
(2014) Mps.br. [Online]. Available: http://www.softex.br/mpsbr/

J. Moore, “Predators and prey: a new ecology of competition,” Harvard
Business Review, vol. 3, no. 71, pp. 75-86, 1993.

M. Iansiti and R. Levien, “Strategy as ecology,” Harvard Business
Review, vol. 3, no. 82, pp. 68-78, 2004.

J. van Angeren, V. Blijleven, and S. Jansen, “Relationship intimacy
in software ecosystems: A survey of the dutch software industry,” in
Proc. International Conference on Management of Emergent Digital
EcoSystems, 2011, pp. 68-75.

T. Isckia and D. Lescop, “Open innovation within business ecosystems:
A tale from amazon.com,” Communications & Strategies, vol. 2, no. 74,
pp. 37-54, 2009.

M. Levy, C. Lobbecke, and P. Powell, “Smes co-opetition and knowledge
sharing: The is role,” in Proc. 9th European Conference on Information
Systems, 2001, pp. 640-652.

A. Baars and S. Jansen, “A framework for software ecosystem gover-
nance,” in Proc. Third International Conference on Software Business,
2012, pp. 168-180.

S. Jansen, S. Brinkkemper, J. Souer, and L. Luinenburg, “Shades of gray:
Opening up a software producing organization with the open software
enterprise model,” Journal of Systems and Software, vol. 85, no. 7, pp.
1495-1510, 2012.

P. E. Harland and S. Wst, “Strategic, brand and platform requirements for
an interactive innovation process in business ecosystems,” in Proc. 18th
International Conference on Engineering, Technology and Innovation,
2012, pp. 1-9.

A. Gawer and M. Cusumano, Platform Leadership: How Intel, Mi-
crosoft, and Cisco Drive Industry Innovation. Harvard Business School
Press, 2002.

P. Artz, I. van de Weerd, S. Brinkkemper, and J. Fieggen, ‘“Produc-
tization: Transforming from developing customer-specific software to
product software,” in Proc. First International Conference on Software
Business, 2010, pp. 90-102.

T. Suomalainen, O. Saloi, P. Abrahamsson, and J. Simil “Software
product roadmapping in a volatile business environment.”

K. Vlaanderen, S. Jansen, S. Brinkkemper, and E. Jaspers, “The agile
requirements refinery: Applying scrum principles to software product
management,” Information & Software Technology, vol. 53, no. 1, pp.
58-70, 2011.

A. Milne and N. A. M. Maiden, “Power and politics in requirements
engineering: Embracing the dark side?” Requir. Eng., vol. 17, no. 2, pp.
83-98, 2012.

S. Fricker and M. Glinz, “Comparison of requirements hand-off, anal-
ysis, and negotiation: Case study,” in Proc. 18th IEEE International

Conference on Requirements Engineering, 2010, p. 167.

